Existentially closed Leibniz algebras and an embedding theorem
Communications in Mathematics, Tome 29 (2021) no. 2, pp. 163-170.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we introduce the notion of existentially closed Leibniz algebras. Then we use HNN-extensions of Leibniz algebras in order to prove an embedding theorem.
Classification : 16S15, 17A32, 17A36
Keywords: Existentially closed; Leibniz algebras; HNN-extension
@article{COMIM_2021__29_2_a0,
     author = {Zargeh, Chia},
     title = {Existentially closed {Leibniz} algebras and an embedding theorem},
     journal = {Communications in Mathematics},
     pages = {163--170},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2021},
     mrnumber = {4285748},
     zbl = {07426415},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a0/}
}
TY  - JOUR
AU  - Zargeh, Chia
TI  - Existentially closed Leibniz algebras and an embedding theorem
JO  - Communications in Mathematics
PY  - 2021
SP  - 163
EP  - 170
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a0/
LA  - en
ID  - COMIM_2021__29_2_a0
ER  - 
%0 Journal Article
%A Zargeh, Chia
%T Existentially closed Leibniz algebras and an embedding theorem
%J Communications in Mathematics
%D 2021
%P 163-170
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a0/
%G en
%F COMIM_2021__29_2_a0
Zargeh, Chia. Existentially closed Leibniz algebras and an embedding theorem. Communications in Mathematics, Tome 29 (2021) no. 2, pp. 163-170. http://geodesic.mathdoc.fr/item/COMIM_2021__29_2_a0/