The inverse problem in the calculus of variations: new developments
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 131-149
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We deal with the problem of determining the existence and uniqueness of Lagrangians for systems of $n$ second order ordinary differential equations. A number of recent theorems are presented, using exterior differential systems theory (EDS). In particular, we indicate how to generalise Jesse Douglas's famous solution for $n=2$. We then examine a new class of solutions in arbitrary dimension $n$ and give some non-trivial examples in dimension 3.
Classification :
37J06, 49N45, 58A15, 70H03
Keywords: Inverse problem in the calculus of variations; Helmholtz conditions; Exterior differential systems; Lagrangian system.
Keywords: Inverse problem in the calculus of variations; Helmholtz conditions; Exterior differential systems; Lagrangian system.
@article{COMIM_2021__29_1_a7,
author = {Do, Thoan and Prince, Geoff},
title = {The inverse problem in the calculus of variations: new developments},
journal = {Communications in Mathematics},
pages = {131--149},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2021},
mrnumber = {4251311},
zbl = {07413361},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a7/}
}
TY - JOUR AU - Do, Thoan AU - Prince, Geoff TI - The inverse problem in the calculus of variations: new developments JO - Communications in Mathematics PY - 2021 SP - 131 EP - 149 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a7/ LA - en ID - COMIM_2021__29_1_a7 ER -
Do, Thoan; Prince, Geoff. The inverse problem in the calculus of variations: new developments. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 131-149. http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a7/