Jets and the variational calculus
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 91-114.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We review the approach to the calculus of variations using Ehresmann's theory of jets. We describe different types of jet manifold, different types of variational problem and different cohomological structures associated with such problems.
Classification : 58A20, 58E30
Keywords: Jets; Calculus of variations
@article{COMIM_2021__29_1_a5,
     author = {Saunders, David J.},
     title = {Jets and the variational calculus},
     journal = {Communications in Mathematics},
     pages = {91--114},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     mrnumber = {4251307},
     zbl = {07413359},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a5/}
}
TY  - JOUR
AU  - Saunders, David J.
TI  - Jets and the variational calculus
JO  - Communications in Mathematics
PY  - 2021
SP  - 91
EP  - 114
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a5/
LA  - en
ID  - COMIM_2021__29_1_a5
ER  - 
%0 Journal Article
%A Saunders, David J.
%T Jets and the variational calculus
%J Communications in Mathematics
%D 2021
%P 91-114
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a5/
%G en
%F COMIM_2021__29_1_a5
Saunders, David J. Jets and the variational calculus. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 91-114. http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a5/