Metric groups, unitary representations and continuous logic
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 35-48.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We describe how properties of metric groups and of unitary representations of metric groups can be presented in continuous logic. In particular we find $L_{\omega _1 \omega }$-axiomatization of amenability. We also show that in the case of locally compact groups some uniform version of the negation of Kazhdan's property (T) can be viewed as a union of first-order axiomatizable classes. We will see when these properties are preserved under taking elementary substructures.
Classification : 03C52, 22F05
Keywords: Continuous logic; metric groups; unitary representations; amenable groups.
@article{COMIM_2021__29_1_a2,
     author = {Ivanov, Aleksander},
     title = {Metric groups, unitary representations and continuous logic},
     journal = {Communications in Mathematics},
     pages = {35--48},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     mrnumber = {4251310},
     zbl = {07413356},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a2/}
}
TY  - JOUR
AU  - Ivanov, Aleksander
TI  - Metric groups, unitary representations and continuous logic
JO  - Communications in Mathematics
PY  - 2021
SP  - 35
EP  - 48
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a2/
LA  - en
ID  - COMIM_2021__29_1_a2
ER  - 
%0 Journal Article
%A Ivanov, Aleksander
%T Metric groups, unitary representations and continuous logic
%J Communications in Mathematics
%D 2021
%P 35-48
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a2/
%G en
%F COMIM_2021__29_1_a2
Ivanov, Aleksander. Metric groups, unitary representations and continuous logic. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 35-48. http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a2/