Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 15-34.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is known that a real symmetric circulant matrix with diagonal entries $d\geq 0$, off-diagonal entries $\pm 1$ and orthogonal rows exists only of order $2d+2$ (and trivially of order $1$) [Turek and Goyeneche 2019]. In this paper we consider a complex Hermitian analogy of those matrices. That is, we study the existence and construction of Hermitian circulant matrices having orthogonal rows, diagonal entries $d\geq 0$ and any complex entries of absolute value $1$ off the diagonal. As a particular case, we consider matrices whose off-diagonal entries are 4th roots of unity; we prove that the order of any such matrix with $d$ different from an odd integer is $n=2d+2$. We also discuss a similar problem for symmetric circulant matrices defined over finite rings $\mathbb {Z}_m$. As an application of our results, we show a close connection to mutually unbiased bases, an important open problem in quantum information theory.
Classification : 15B05, 15B10, 15B36
Keywords: Circulant matrix; orthogonal matrix; Hadamard matrix; mutually unbiased base
@article{COMIM_2021__29_1_a1,
     author = {Contreras, Daniel Uzc\'ategui and Goyeneche, Dardo and Turek, Ond\v{r}ej and V\'aclav{\'\i}kov\'a, Zuzana},
     title = {Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$},
     journal = {Communications in Mathematics},
     pages = {15--34},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2021},
     mrnumber = {4251308},
     zbl = {07413355},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a1/}
}
TY  - JOUR
AU  - Contreras, Daniel Uzcátegui
AU  - Goyeneche, Dardo
AU  - Turek, Ondřej
AU  - Václavíková, Zuzana
TI  - Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$
JO  - Communications in Mathematics
PY  - 2021
SP  - 15
EP  - 34
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a1/
LA  - en
ID  - COMIM_2021__29_1_a1
ER  - 
%0 Journal Article
%A Contreras, Daniel Uzcátegui
%A Goyeneche, Dardo
%A Turek, Ondřej
%A Václavíková, Zuzana
%T Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$
%J Communications in Mathematics
%D 2021
%P 15-34
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a1/
%G en
%F COMIM_2021__29_1_a1
Contreras, Daniel Uzcátegui; Goyeneche, Dardo; Turek, Ondřej; Václavíková, Zuzana. Circulant matrices with orthogonal rows and off-diagonal entries of absolute value $1$. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 15-34. http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a1/