Rota-Baxter operators and Bernoulli polynomials
Communications in Mathematics, Tome 29 (2021) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We develop the connection between Rota-Baxter operators arisen from algebra and mathematical physics and Bernoulli polynomials. We state that a trivial property of Rota-Baxter operators implies the symmetry of the power sum polynomials and Bernoulli polynomials. We show how Rota-Baxter operators equalities rewritten in terms of Bernoulli polynomials generate identities for the latter.
Classification :
11B68, 16W99
Keywords: Rota-Baxter operator; Bernoulli number; Bernoulli polynomial
Keywords: Rota-Baxter operator; Bernoulli number; Bernoulli polynomial
@article{COMIM_2021__29_1_a0,
author = {Gubarev, Vsevolod},
title = {Rota-Baxter operators and {Bernoulli} polynomials},
journal = {Communications in Mathematics},
pages = {1--14},
publisher = {mathdoc},
volume = {29},
number = {1},
year = {2021},
mrnumber = {4251304},
zbl = {07413354},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a0/}
}
Gubarev, Vsevolod. Rota-Baxter operators and Bernoulli polynomials. Communications in Mathematics, Tome 29 (2021) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/COMIM_2021__29_1_a0/