A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 301-305.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For every simple finite-dimensional complex Lie algebra, I give a simple construction of all (except for the Pfaffian) basic polynomials invariant under the Weyl group. The answer is given in terms of the two basic polynomials of smallest degree.
Classification : 11F22
Keywords: Weyl group; invariant polynomial
@article{COMIM_2020__28_3_a4,
     author = {Perelomov, Askold M.},
     title = {A simple construction of basic polynomials invariant under the {Weyl} group of the simple finite-dimensional complex {Lie} algebra},
     journal = {Communications in Mathematics},
     pages = {301--305},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2020},
     mrnumber = {4197081},
     zbl = {07426513},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a4/}
}
TY  - JOUR
AU  - Perelomov, Askold M.
TI  - A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra
JO  - Communications in Mathematics
PY  - 2020
SP  - 301
EP  - 305
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a4/
LA  - en
ID  - COMIM_2020__28_3_a4
ER  - 
%0 Journal Article
%A Perelomov, Askold M.
%T A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra
%J Communications in Mathematics
%D 2020
%P 301-305
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a4/
%G en
%F COMIM_2020__28_3_a4
Perelomov, Askold M. A simple construction of basic polynomials invariant under the Weyl group of the simple finite-dimensional complex Lie algebra. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 301-305. http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a4/