Generalization of uniqueness and value sharing of meromorphic functions concerning differential polynomials
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 289-299
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The motivation of this paper is to study the uniqueness problems of meromorphic functions concerning differential polynomials that share a small function. The results of the paper improve and generalize the recent results due to Fengrong Zhang and Linlin Wu [13]. We also solve an open problem as posed in the last section of [13].
Classification :
30D35
Keywords: Uniqueness, Meromorphic functions; Sharing value; Differential polynomials.
Keywords: Uniqueness, Meromorphic functions; Sharing value; Differential polynomials.
@article{COMIM_2020__28_3_a3,
author = {Waghamore, Harina P. and Maligi, Ramya},
title = {Generalization of uniqueness and value sharing of meromorphic functions concerning differential polynomials},
journal = {Communications in Mathematics},
pages = {289--299},
publisher = {mathdoc},
volume = {28},
number = {3},
year = {2020},
mrnumber = {4197080},
zbl = {1477.30031},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a3/}
}
TY - JOUR AU - Waghamore, Harina P. AU - Maligi, Ramya TI - Generalization of uniqueness and value sharing of meromorphic functions concerning differential polynomials JO - Communications in Mathematics PY - 2020 SP - 289 EP - 299 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a3/ LA - en ID - COMIM_2020__28_3_a3 ER -
%0 Journal Article %A Waghamore, Harina P. %A Maligi, Ramya %T Generalization of uniqueness and value sharing of meromorphic functions concerning differential polynomials %J Communications in Mathematics %D 2020 %P 289-299 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a3/ %G en %F COMIM_2020__28_3_a3
Waghamore, Harina P.; Maligi, Ramya. Generalization of uniqueness and value sharing of meromorphic functions concerning differential polynomials. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 289-299. http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a3/