Deformations of Metrics and Biharmonic Maps
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 263-275.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We construct biharmonic non-harmonic maps between Riemannian manifolds $(M,g)$ and $(N,h)$ by first making the ansatz that $\varphi \colon (M,g) \rightarrow (N,h)$ be a harmonic map and then deforming the metric on $N$ by $$\tilde {h}_{\alpha }=\alpha h+(1-\alpha )df\otimes df$$ to render $\varphi $ biharmonic, where $f$ is a smooth function with gradient of constant norm on $(N,h)$ and $\alpha \in (0,1)$. We construct new examples of biharmonic non-harmonic maps, and we characterize the biharmonicity of some curves on Riemannian manifolds.
Classification : 53C20, 53C22, 58E20
Keywords: Riemannian geometry; Harmonic maps; Biharmonic maps
@article{COMIM_2020__28_3_a1,
     author = {Benkartab, Aicha and Cherif, Ahmed Mohammed},
     title = {Deformations of {Metrics} and {Biharmonic} {Maps}},
     journal = {Communications in Mathematics},
     pages = {263--275},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2020},
     mrnumber = {4197078},
     zbl = {1480.53051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a1/}
}
TY  - JOUR
AU  - Benkartab, Aicha
AU  - Cherif, Ahmed Mohammed
TI  - Deformations of Metrics and Biharmonic Maps
JO  - Communications in Mathematics
PY  - 2020
SP  - 263
EP  - 275
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a1/
LA  - en
ID  - COMIM_2020__28_3_a1
ER  - 
%0 Journal Article
%A Benkartab, Aicha
%A Cherif, Ahmed Mohammed
%T Deformations of Metrics and Biharmonic Maps
%J Communications in Mathematics
%D 2020
%P 263-275
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a1/
%G en
%F COMIM_2020__28_3_a1
Benkartab, Aicha; Cherif, Ahmed Mohammed. Deformations of Metrics and Biharmonic Maps. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 263-275. http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a1/