On a question of Schmidt and Summerer concerning $3$-systems
Communications in Mathematics, Tome 28 (2020) no. 3, pp. 253-262.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Following a suggestion of W.M. Schmidt and L. Summerer, we construct a proper $3$-system $(P_{1},P_{2},P_{3})$ with the property $\overline {\varphi }_{3}=1$. In fact, our method generalizes to provide $n$-systems with $\overline {\varphi }_{n}=1$, for arbitrary $n\geq 3$. We visualize our constructions with graphics. We further present explicit examples of numbers $\xi _{1}, \ldots , \xi _{n-1}$ that induce the $n$-systems in question.
Classification : 11H06, 11J13
Keywords: parametric geometry of numbers; simultaneous approximation
@article{COMIM_2020__28_3_a0,
     author = {Schleischitz, Johannes},
     title = {On a question of {Schmidt} and {Summerer} concerning $3$-systems},
     journal = {Communications in Mathematics},
     pages = {253--262},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2020},
     mrnumber = {4197077},
     zbl = {1475.11131},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a0/}
}
TY  - JOUR
AU  - Schleischitz, Johannes
TI  - On a question of Schmidt and Summerer concerning $3$-systems
JO  - Communications in Mathematics
PY  - 2020
SP  - 253
EP  - 262
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a0/
LA  - en
ID  - COMIM_2020__28_3_a0
ER  - 
%0 Journal Article
%A Schleischitz, Johannes
%T On a question of Schmidt and Summerer concerning $3$-systems
%J Communications in Mathematics
%D 2020
%P 253-262
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a0/
%G en
%F COMIM_2020__28_3_a0
Schleischitz, Johannes. On a question of Schmidt and Summerer concerning $3$-systems. Communications in Mathematics, Tome 28 (2020) no. 3, pp. 253-262. http://geodesic.mathdoc.fr/item/COMIM_2020__28_3_a0/