On tangent cones to Schubert varieties in type $E$
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 179-197
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider tangent cones to Schubert subvarieties of the flag variety $G/B$, where $B$ is a Borel subgroup of a reductive complex algebraic group $G$ of type $E_6$, $E_7$ or $E_8$. We prove that if $w_1$ and $w_2$ form a good pair of involutions in the Weyl group $W$ of $G$ then the tangent cones $C_{w_1}$ and $C_{w_2}$ to the corresponding Schubert subvarieties of $G/B$ do not coincide as subschemes of the tangent space to $G/B$ at the neutral point.
Classification :
14M15, 17B22
Keywords: flag variety; Schubert variety; tangent cone; involution in the Weyl group; Kostant-Kumar polynomial
Keywords: flag variety; Schubert variety; tangent cone; involution in the Weyl group; Kostant-Kumar polynomial
@article{COMIM_2020__28_2_a6,
author = {Ignatyev, Mikhail V. and Shevchenko, Aleksandr A.},
title = {On tangent cones to {Schubert} varieties in type $E$},
journal = {Communications in Mathematics},
pages = {179--197},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2020},
mrnumber = {4162929},
zbl = {07300189},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a6/}
}
TY - JOUR AU - Ignatyev, Mikhail V. AU - Shevchenko, Aleksandr A. TI - On tangent cones to Schubert varieties in type $E$ JO - Communications in Mathematics PY - 2020 SP - 179 EP - 197 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a6/ LA - en ID - COMIM_2020__28_2_a6 ER -
Ignatyev, Mikhail V.; Shevchenko, Aleksandr A. On tangent cones to Schubert varieties in type $E$. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 179-197. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a6/