The variety of dual mock-Lie algebras
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 161-178.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We classify all complex $7$- and $8$-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex $9$-dimensional dual mock-Lie algebras.
Classification : 14D06, 14L30, 17A30
Keywords: Nilpotent algebra; mock-Lie algebra; dual mock-Lie algebra; anticommutative algebra; algebraic classification; geometric classification; central extension; degeneration
@article{COMIM_2020__28_2_a5,
     author = {Camacho, Luisa M. and Kaygorodov, Ivan and Lopatkin, Viktor and Salim, Mohamed A.},
     title = {The variety of dual {mock-Lie} algebras},
     journal = {Communications in Mathematics},
     pages = {161--178},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2020},
     mrnumber = {4162928},
     zbl = {07300188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a5/}
}
TY  - JOUR
AU  - Camacho, Luisa M.
AU  - Kaygorodov, Ivan
AU  - Lopatkin, Viktor
AU  - Salim, Mohamed A.
TI  - The variety of dual mock-Lie algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 161
EP  - 178
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a5/
LA  - en
ID  - COMIM_2020__28_2_a5
ER  - 
%0 Journal Article
%A Camacho, Luisa M.
%A Kaygorodov, Ivan
%A Lopatkin, Viktor
%A Salim, Mohamed A.
%T The variety of dual mock-Lie algebras
%J Communications in Mathematics
%D 2020
%P 161-178
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a5/
%G en
%F COMIM_2020__28_2_a5
Camacho, Luisa M.; Kaygorodov, Ivan; Lopatkin, Viktor; Salim, Mohamed A. The variety of dual mock-Lie algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 161-178. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a5/