Lie commutators in a free diassociative algebra
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 155-160.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a criterion for Leibniz elements in a free diassociative algebra. In the diassociative case one can consider two versions of Lie commutators. We give criterions for elements of diassociative algebras to be Lie under these commutators. One of them corresponds to Leibniz elements. It generalizes the Dynkin-Specht-Wever criterion for Lie elements in a free associative algebra.
Classification : 17A30, 17A50
Keywords: Diassociative algebars; Leibniz elements; Dynkin-Specht-Wever criterion
@article{COMIM_2020__28_2_a4,
     author = {Dzhumadil'daev, A.S. and Ismailov, N.A. and Orazgaliyev, A.T.},
     title = {Lie commutators in a free diassociative algebra},
     journal = {Communications in Mathematics},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2020},
     mrnumber = {4162927},
     zbl = {07300187},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a4/}
}
TY  - JOUR
AU  - Dzhumadil'daev, A.S.
AU  - Ismailov, N.A.
AU  - Orazgaliyev, A.T.
TI  - Lie commutators in a free diassociative algebra
JO  - Communications in Mathematics
PY  - 2020
SP  - 155
EP  - 160
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a4/
LA  - en
ID  - COMIM_2020__28_2_a4
ER  - 
%0 Journal Article
%A Dzhumadil'daev, A.S.
%A Ismailov, N.A.
%A Orazgaliyev, A.T.
%T Lie commutators in a free diassociative algebra
%J Communications in Mathematics
%D 2020
%P 155-160
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a4/
%G en
%F COMIM_2020__28_2_a4
Dzhumadil'daev, A.S.; Ismailov, N.A.; Orazgaliyev, A.T. Lie commutators in a free diassociative algebra. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 155-160. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a4/