Homogeneous Einstein manifolds based on symplectic triple systems
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 139-154
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.
Classification :
17A40, 17B60, 53C30, 53C50
Keywords: Einstein metric; symplectic triple system; homogeneous manifold; curvature; 3\discretionary-Sasakian manifold; Freudenthal triple system
Keywords: Einstein metric; symplectic triple system; homogeneous manifold; curvature; 3\discretionary-Sasakian manifold; Freudenthal triple system
@article{COMIM_2020__28_2_a3,
author = {Fontanals, Cristina Draper},
title = {Homogeneous {Einstein} manifolds based on symplectic triple systems},
journal = {Communications in Mathematics},
pages = {139--154},
publisher = {mathdoc},
volume = {28},
number = {2},
year = {2020},
mrnumber = {4162926},
zbl = {07300186},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a3/}
}
Fontanals, Cristina Draper. Homogeneous Einstein manifolds based on symplectic triple systems. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 139-154. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a3/