Homogeneous Einstein manifolds based on symplectic triple systems
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 139-154.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For each simple symplectic triple system over the real numbers, the standard enveloping Lie algebra and the algebra of inner derivations of the triple provide a reductive pair related to a semi-Riemannian homogeneous manifold. It is proved that this is an Einstein manifold.
Classification : 17A40, 17B60, 53C30, 53C50
Keywords: Einstein metric; symplectic triple system; homogeneous manifold; curvature; 3\discretionary-Sasakian manifold; Freudenthal triple system
@article{COMIM_2020__28_2_a3,
     author = {Fontanals, Cristina Draper},
     title = {Homogeneous {Einstein} manifolds based on symplectic triple systems},
     journal = {Communications in Mathematics},
     pages = {139--154},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2020},
     mrnumber = {4162926},
     zbl = {07300186},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a3/}
}
TY  - JOUR
AU  - Fontanals, Cristina Draper
TI  - Homogeneous Einstein manifolds based on symplectic triple systems
JO  - Communications in Mathematics
PY  - 2020
SP  - 139
EP  - 154
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a3/
LA  - en
ID  - COMIM_2020__28_2_a3
ER  - 
%0 Journal Article
%A Fontanals, Cristina Draper
%T Homogeneous Einstein manifolds based on symplectic triple systems
%J Communications in Mathematics
%D 2020
%P 139-154
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a3/
%G en
%F COMIM_2020__28_2_a3
Fontanals, Cristina Draper. Homogeneous Einstein manifolds based on symplectic triple systems. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 139-154. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a3/