Spectral sequences for commutative Lie algebras
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 123-137.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.
Classification : 17A30, 17A32, 17B50, 17B55, 17B56
Keywords: Leibniz cohomology; Chevalley-Eilenberg cohomology; spectral sequence; commutative Lie algebra; commutative cohomology
@article{COMIM_2020__28_2_a2,
     author = {Wagemann, Friedrich},
     title = {Spectral sequences for commutative {Lie} algebras},
     journal = {Communications in Mathematics},
     pages = {123--137},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2020},
     mrnumber = {4162925},
     zbl = {07300185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/}
}
TY  - JOUR
AU  - Wagemann, Friedrich
TI  - Spectral sequences for commutative Lie algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 123
EP  - 137
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/
LA  - en
ID  - COMIM_2020__28_2_a2
ER  - 
%0 Journal Article
%A Wagemann, Friedrich
%T Spectral sequences for commutative Lie algebras
%J Communications in Mathematics
%D 2020
%P 123-137
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/
%G en
%F COMIM_2020__28_2_a2
Wagemann, Friedrich. Spectral sequences for commutative Lie algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 123-137. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/