Spectral sequences for commutative Lie algebras
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 123-137

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We construct some spectral sequences as tools for computing commutative cohomology of commutative Lie algebras in characteristic $2$. In a first part, we focus on a Hochschild-Serre-type spectral sequence, while in a second part we obtain spectral sequences which compare Chevalley-Eilenberg-, commutative- and Leibniz cohomology. These methods are illustrated by a few computations.
Classification : 17A30, 17A32, 17B50, 17B55, 17B56
Keywords: Leibniz cohomology; Chevalley-Eilenberg cohomology; spectral sequence; commutative Lie algebra; commutative cohomology
@article{COMIM_2020__28_2_a2,
     author = {Wagemann, Friedrich},
     title = {Spectral sequences for commutative {Lie} algebras},
     journal = {Communications in Mathematics},
     pages = {123--137},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2020},
     mrnumber = {4162925},
     zbl = {07300185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/}
}
TY  - JOUR
AU  - Wagemann, Friedrich
TI  - Spectral sequences for commutative Lie algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 123
EP  - 137
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/
LA  - en
ID  - COMIM_2020__28_2_a2
ER  - 
%0 Journal Article
%A Wagemann, Friedrich
%T Spectral sequences for commutative Lie algebras
%J Communications in Mathematics
%D 2020
%P 123-137
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/
%G en
%F COMIM_2020__28_2_a2
Wagemann, Friedrich. Spectral sequences for commutative Lie algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 123-137. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a2/