Leibniz $A$-algebras
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 103-121.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A finite-dimensional Lie algebra is called an $A$-algebra if all of its nilpotent subalgebras are abelian. These arise in the study of constant Yang-Mills potentials and have also been particularly important in relation to the problem of describing residually finite varieties. They have been studied by several authors, including Bakhturin, Dallmer, Drensky, Sheina, Premet, Semenov, Towers and Varea. In this paper we establish generalisations of many of these results to Leibniz algebras.
Classification : 17A32, 17B05, 17B20, 17B30, 17B50
Keywords: Lie algebras; Leibniz algebras; $A$-algebras; Frattini ideal; solvable; nilpotent; completely solvable; metabelian; monolithic; cyclic Leibniz algebras
@article{COMIM_2020__28_2_a1,
     author = {Towers, David A.},
     title = {Leibniz $A$-algebras},
     journal = {Communications in Mathematics},
     pages = {103--121},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2020},
     mrnumber = {4162924},
     zbl = {07300184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a1/}
}
TY  - JOUR
AU  - Towers, David A.
TI  - Leibniz $A$-algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 103
EP  - 121
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a1/
LA  - en
ID  - COMIM_2020__28_2_a1
ER  - 
%0 Journal Article
%A Towers, David A.
%T Leibniz $A$-algebras
%J Communications in Mathematics
%D 2020
%P 103-121
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a1/
%G en
%F COMIM_2020__28_2_a1
Towers, David A. Leibniz $A$-algebras. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 103-121. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a1/