Division algebras that generalize Dickson semifields
Communications in Mathematics, Tome 28 (2020) no. 2, pp. 89-102.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We generalize Knuth's construction of Case I semifields quadratic over a weak nucleus, also known as generalized Dickson semifields, by doubling of central simple algebras. We thus obtain division algebras of dimension $2s^2$ by doubling central division algebras of degree $s$. Results on isomorphisms and automorphisms of these algebras are obtained in certain cases.
Classification : 17A35, 17A36, 17A60
Keywords: Nonassociative algebras; division algebras; automorphisms
@article{COMIM_2020__28_2_a0,
     author = {Thompson, Daniel},
     title = {Division algebras that generalize {Dickson} semifields},
     journal = {Communications in Mathematics},
     pages = {89--102},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2020},
     mrnumber = {4162923},
     zbl = {07300183},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a0/}
}
TY  - JOUR
AU  - Thompson, Daniel
TI  - Division algebras that generalize Dickson semifields
JO  - Communications in Mathematics
PY  - 2020
SP  - 89
EP  - 102
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a0/
LA  - en
ID  - COMIM_2020__28_2_a0
ER  - 
%0 Journal Article
%A Thompson, Daniel
%T Division algebras that generalize Dickson semifields
%J Communications in Mathematics
%D 2020
%P 89-102
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a0/
%G en
%F COMIM_2020__28_2_a0
Thompson, Daniel. Division algebras that generalize Dickson semifields. Communications in Mathematics, Tome 28 (2020) no. 2, pp. 89-102. http://geodesic.mathdoc.fr/item/COMIM_2020__28_2_a0/