Polynomials and degrees of maps in real normed algebras
Communications in Mathematics, Tome 28 (2020) no. 1, pp. 43-54.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal{A}$ be the algebra of quaternions $\mathbb{H}$ or octonions $\mathbb{O}$. In this manuscript an elementary proof is given, based on ideas of Cauchy and D'Alembert, of the fact that an ordinary polynomial $f(t) \in \mathcal{A} [t]$ has a root in $\mathcal{A}$. As a consequence, the Jacobian determinant $\lvert J(f)\rvert $ is always non-negative in $\mathcal{A}$. Moreover, using the idea of the topological degree we show that a regular polynomial $g(t)$ over $\mathcal{A}$ has also a root in $\mathcal{A}$. Finally, utilizing multiplication ($*$) in $\mathcal{A}$, we prove various results on the topological degree of products of maps. In particular, if $S$ is the unit sphere in $\mathcal{A}$ and $h_1, h_2\colon S \to S$ are smooth maps, it is shown that $\deg (h_1 * h_2)=\deg (h_1) + \deg (h_2)$.
Classification : 11R52, 12E15, 26B10
Keywords: ordinary polynomials; regular polynomials; Jacobians; degrees of maps
@article{COMIM_2020__28_1_a3,
     author = {Sakkalis, Takis},
     title = {Polynomials and degrees of maps in real normed algebras},
     journal = {Communications in Mathematics},
     pages = {43--54},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     mrnumber = {4124289},
     zbl = {1470.26021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a3/}
}
TY  - JOUR
AU  - Sakkalis, Takis
TI  - Polynomials and degrees of maps in real normed algebras
JO  - Communications in Mathematics
PY  - 2020
SP  - 43
EP  - 54
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a3/
LA  - en
ID  - COMIM_2020__28_1_a3
ER  - 
%0 Journal Article
%A Sakkalis, Takis
%T Polynomials and degrees of maps in real normed algebras
%J Communications in Mathematics
%D 2020
%P 43-54
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a3/
%G en
%F COMIM_2020__28_1_a3
Sakkalis, Takis. Polynomials and degrees of maps in real normed algebras. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 43-54. http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a3/