Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type
Communications in Mathematics, Tome 28 (2020) no. 1, pp. 13-25
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this work, we consider the singular Hahn difference equation of the Sturm-Liouville type. We prove the existence of the spectral function for this equation. We establish Parseval equality and an expansion formula for this equation on a semi-unbounded interval.
Classification :
34B40, 34L10, 39A12, 39A13, 39A70
Keywords: Hahn's Sturm-Liouville equation; spectral function; Parseval equality; spectral expansion.
Keywords: Hahn's Sturm-Liouville equation; spectral function; Parseval equality; spectral expansion.
@article{COMIM_2020__28_1_a1,
author = {Allahverdiev, Bilender P. and Tuna, H\"useyin},
title = {Spectral {Theory} of {Singular} {Hahn} {Difference} {Equation} of the {Sturm-Liouville} {Type}},
journal = {Communications in Mathematics},
pages = {13--25},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2020},
mrnumber = {4124287},
zbl = {07368970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a1/}
}
TY - JOUR AU - Allahverdiev, Bilender P. AU - Tuna, Hüseyin TI - Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type JO - Communications in Mathematics PY - 2020 SP - 13 EP - 25 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a1/ LA - en ID - COMIM_2020__28_1_a1 ER -
%0 Journal Article %A Allahverdiev, Bilender P. %A Tuna, Hüseyin %T Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type %J Communications in Mathematics %D 2020 %P 13-25 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a1/ %G en %F COMIM_2020__28_1_a1
Allahverdiev, Bilender P.; Tuna, Hüseyin. Spectral Theory of Singular Hahn Difference Equation of the Sturm-Liouville Type. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 13-25. http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a1/