Kappa-Slender Modules
Communications in Mathematics, Tome 28 (2020) no. 1, pp. 1-12.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes.
Classification : 03C20, 03E10, 03E20, 03E55, 03E75, 16D80, 16D90, 18A20, 18A30, 18A40, 20K25
Keywords: kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory
@article{COMIM_2020__28_1_a0,
     author = {Dimitric, Radoslav},
     title = {Kappa-Slender {Modules}},
     journal = {Communications in Mathematics},
     pages = {1--12},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2020},
     mrnumber = {4124286},
     zbl = {07368969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a0/}
}
TY  - JOUR
AU  - Dimitric, Radoslav
TI  - Kappa-Slender Modules
JO  - Communications in Mathematics
PY  - 2020
SP  - 1
EP  - 12
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a0/
LA  - en
ID  - COMIM_2020__28_1_a0
ER  - 
%0 Journal Article
%A Dimitric, Radoslav
%T Kappa-Slender Modules
%J Communications in Mathematics
%D 2020
%P 1-12
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a0/
%G en
%F COMIM_2020__28_1_a0
Dimitric, Radoslav. Kappa-Slender Modules. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a0/