Kappa-Slender Modules
Communications in Mathematics, Tome 28 (2020) no. 1, pp. 1-12
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For an arbitrary infinite cardinal $\kappa $, we define classes of $\kappa $-cslender and $\kappa $-tslender modules as well as related classes of $\kappa $-hmodules and initiate a study of these classes.
Classification :
03C20, 03E10, 03E20, 03E55, 03E75, 16D80, 16D90, 18A20, 18A30, 18A40, 20K25
Keywords: kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory
Keywords: kappa-slender module; $k$-coordinatewise slender; $k$-tailwise slender; $k$-cslender; $k$-tslender; slender module; $k$-hmodule; the Hom functor; infinite products; filtered products; infinite coproducts; filtered products; non-measurable cardinal; torsion theory
@article{COMIM_2020__28_1_a0,
author = {Dimitric, Radoslav},
title = {Kappa-Slender {Modules}},
journal = {Communications in Mathematics},
pages = {1--12},
publisher = {mathdoc},
volume = {28},
number = {1},
year = {2020},
mrnumber = {4124286},
zbl = {07368969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a0/}
}
Dimitric, Radoslav. Kappa-Slender Modules. Communications in Mathematics, Tome 28 (2020) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/COMIM_2020__28_1_a0/