Oscillation in deviating differential equations using an iterative method
Communications in Mathematics, Tome 27 (2019) no. 2, pp. 143-169.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Sufficient oscillation conditions involving $\limsup $ and $\liminf $ for first-order differential equations with non-monotone deviating arguments and nonnegative coefficients are obtained. The results are based on the iterative application of the Grönwall inequality. Examples, numerically solved in MATLAB, are also given to illustrate the applicability and strength of the obtained conditions over known ones.
Classification : 34K06, 34K11
Keywords: differential equation; non-monotone argument; oscillatory solution; nonoscillatory solution; Grönwall inequality.
@article{COMIM_2019__27_2_a5,
     author = {Chatzarakis, George E. and Jadlovsk\'a, Irena},
     title = {Oscillation in deviating differential equations using an iterative method},
     journal = {Communications in Mathematics},
     pages = {143--169},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     mrnumber = {4058171},
     zbl = {1464.34088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a5/}
}
TY  - JOUR
AU  - Chatzarakis, George E.
AU  - Jadlovská, Irena
TI  - Oscillation in deviating differential equations using an iterative method
JO  - Communications in Mathematics
PY  - 2019
SP  - 143
EP  - 169
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a5/
LA  - en
ID  - COMIM_2019__27_2_a5
ER  - 
%0 Journal Article
%A Chatzarakis, George E.
%A Jadlovská, Irena
%T Oscillation in deviating differential equations using an iterative method
%J Communications in Mathematics
%D 2019
%P 143-169
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a5/
%G en
%F COMIM_2019__27_2_a5
Chatzarakis, George E.; Jadlovská, Irena. Oscillation in deviating differential equations using an iterative method. Communications in Mathematics, Tome 27 (2019) no. 2, pp. 143-169. http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a5/