A note on a property of the Gini coefficient
Communications in Mathematics, Tome 27 (2019) no. 2, pp. 81-88.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The scope of this note is a self-contained presentation of a~mathematical method that enables us to give an absolute upper bound for the difference of the Gini coefficients \[ \left |G(\sigma _1,\dots ,\sigma _n)-G(\gamma _1,\dots ,\gamma _n)\right |, \] where $(\gamma _1,\dots ,\gamma _n)$ represents the vector of the gross wages and $(\sigma _1,\dots ,\sigma _n)$ represents the vector of the corresponding super-gross wages that is used in the Czech Republic for calculating the net wage. Since (as of June 2019) $\sigma _i=100\cdot \left \lceil 1.34\gamma _i/100\right \rceil $, the study of the above difference seems to be somewhat inaccessible for many economists. However, our estimate based on the presented technique implies that the introduction of the super-gross wage concept does not essentially affect the value of the Gini coefficient as sometimes expected.
Classification : 26B35, 91B82
Keywords: Gini coefficient; finite sums; estimates
@article{COMIM_2019__27_2_a1,
     author = {Gen\v{c}ev, Marian},
     title = {A note on a property of the {Gini} coefficient},
     journal = {Communications in Mathematics},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2019},
     mrnumber = {4058167},
     zbl = {1467.91107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a1/}
}
TY  - JOUR
AU  - Genčev, Marian
TI  - A note on a property of the Gini coefficient
JO  - Communications in Mathematics
PY  - 2019
SP  - 81
EP  - 88
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a1/
LA  - en
ID  - COMIM_2019__27_2_a1
ER  - 
%0 Journal Article
%A Genčev, Marian
%T A note on a property of the Gini coefficient
%J Communications in Mathematics
%D 2019
%P 81-88
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a1/
%G en
%F COMIM_2019__27_2_a1
Genčev, Marian. A note on a property of the Gini coefficient. Communications in Mathematics, Tome 27 (2019) no. 2, pp. 81-88. http://geodesic.mathdoc.fr/item/COMIM_2019__27_2_a1/