Generalized reverse derivations and commutativity of prime rings
Communications in Mathematics, Tome 27 (2019) no. 1, pp. 43-50.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a prime ring with center $Z(R)$ and $I$ a nonzero right ideal of $R$. Suppose that $R$ admits a generalized reverse derivation $(F,d)$ such that $d(Z(R))\neq 0$. In the present paper, we shall prove that if one of the following conditions holds: (i) $F(xy)\pm xy\in Z(R)$, (ii) $F([x,y])\pm [F(x),y]\in Z(R)$, (iii) $F([x,y])\pm [F(x),F(y)]\in Z(R)$, (iv) $F(x\circ y)\pm F(x)\circ F(y)\in Z(R)$, (v) $[F(x),y]\pm [x,F(y)]\in Z(R)$, (vi) $F(x)\circ y\pm x\circ F(y)\in Z(R)$ for all $x,y \in I$, then $R$ is commutative.
Classification : 16A70, 16N60, 16W25
Keywords: Prime rings; reverse derivations; generalized reverse derivations.
@article{COMIM_2019__27_1_a3,
     author = {Huang, Shuliang},
     title = {Generalized reverse derivations and commutativity of prime rings},
     journal = {Communications in Mathematics},
     pages = {43--50},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     mrnumber = {3977476},
     zbl = {07368958},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a3/}
}
TY  - JOUR
AU  - Huang, Shuliang
TI  - Generalized reverse derivations and commutativity of prime rings
JO  - Communications in Mathematics
PY  - 2019
SP  - 43
EP  - 50
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a3/
LA  - en
ID  - COMIM_2019__27_1_a3
ER  - 
%0 Journal Article
%A Huang, Shuliang
%T Generalized reverse derivations and commutativity of prime rings
%J Communications in Mathematics
%D 2019
%P 43-50
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a3/
%G en
%F COMIM_2019__27_1_a3
Huang, Shuliang. Generalized reverse derivations and commutativity of prime rings. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 43-50. http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a3/