$\alpha$-modules and generalized submodules
Communications in Mathematics, Tome 27 (2019) no. 1, pp. 13-26.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A QTAG-module $M$ is an $\alpha$-module, where $\alpha $ is a limit ordinal, if $M/H_\beta (M)$ is totally projective for every ordinal $\beta \alpha$. In the present paper $\alpha $-modules are studied with the help of $\alpha $-pure submodules, $\alpha $-basic submodules, and $\alpha$-large submodules. It is found that an $\alpha $-closed $\alpha$-module is an $\alpha $-injective. For any ordinal $\omega \leq \alpha \leq \omega _1$ we prove that an $\alpha $-large submodule $L$ of an $\omega _1$-module $M$ is summable if and only if $M$ is summable.
Classification : 16K20
Keywords: $\alpha$-modules; $\alpha$-pure submodules; $\alpha$-basic submodules; $\alpha$-large submodules.
@article{COMIM_2019__27_1_a1,
     author = {Rafiquddin, Rafiquddin and Hasan, Ayazul and Ahmad, Mohammad Fareed},
     title = {$\alpha$-modules and generalized submodules},
     journal = {Communications in Mathematics},
     pages = {13--26},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2019},
     mrnumber = {3977474},
     zbl = {1464.16013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a1/}
}
TY  - JOUR
AU  - Rafiquddin, Rafiquddin
AU  - Hasan, Ayazul
AU  - Ahmad, Mohammad Fareed
TI  - $\alpha$-modules and generalized submodules
JO  - Communications in Mathematics
PY  - 2019
SP  - 13
EP  - 26
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a1/
LA  - en
ID  - COMIM_2019__27_1_a1
ER  - 
%0 Journal Article
%A Rafiquddin, Rafiquddin
%A Hasan, Ayazul
%A Ahmad, Mohammad Fareed
%T $\alpha$-modules and generalized submodules
%J Communications in Mathematics
%D 2019
%P 13-26
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a1/
%G en
%F COMIM_2019__27_1_a1
Rafiquddin, Rafiquddin; Hasan, Ayazul; Ahmad, Mohammad Fareed. $\alpha$-modules and generalized submodules. Communications in Mathematics, Tome 27 (2019) no. 1, pp. 13-26. http://geodesic.mathdoc.fr/item/COMIM_2019__27_1_a1/