New stability results for spheres and Wulff shapes
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 153-167.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that a closed convex hypersurface of the Euclidean space with almost constant anisotropic first and second mean curvatures in the $L^p$-sense is $W^{2,p}$-close (up to rescaling and translations) to the Wulff shape. We also obtain characterizations of geodesic hyperspheres of space forms improving those of \cite {Ro1} and \cite {Ro}.
Classification : 53A10, 53C42
Keywords: Hypersurfaces; Anisotropic mean curvatures; Wulff Shape; Almost umibilcal
@article{COMIM_2018__26_2_a6,
     author = {Roth, Julien},
     title = {New stability results for spheres and {Wulff} shapes},
     journal = {Communications in Mathematics},
     pages = {153--167},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     mrnumber = {3898200},
     zbl = {07058962},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a6/}
}
TY  - JOUR
AU  - Roth, Julien
TI  - New stability results for spheres and Wulff shapes
JO  - Communications in Mathematics
PY  - 2018
SP  - 153
EP  - 167
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a6/
LA  - en
ID  - COMIM_2018__26_2_a6
ER  - 
%0 Journal Article
%A Roth, Julien
%T New stability results for spheres and Wulff shapes
%J Communications in Mathematics
%D 2018
%P 153-167
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a6/
%G en
%F COMIM_2018__26_2_a6
Roth, Julien. New stability results for spheres and Wulff shapes. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 153-167. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a6/