A new class of almost complex structures on tangent bundle of a Riemannian manifold
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 137-145.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.
Classification : 32Q60, 58A30
Keywords: Almost complex structure; curvature operator; integrability; tangent bundle
@article{COMIM_2018__26_2_a4,
     author = {Baghban, Amir and Abedi, Esmaeil},
     title = {A new class of almost complex structures on tangent bundle of a {Riemannian} manifold},
     journal = {Communications in Mathematics},
     pages = {137--145},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     mrnumber = {3898198},
     zbl = {07058960},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a4/}
}
TY  - JOUR
AU  - Baghban, Amir
AU  - Abedi, Esmaeil
TI  - A new class of almost complex structures on tangent bundle of a Riemannian manifold
JO  - Communications in Mathematics
PY  - 2018
SP  - 137
EP  - 145
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a4/
LA  - en
ID  - COMIM_2018__26_2_a4
ER  - 
%0 Journal Article
%A Baghban, Amir
%A Abedi, Esmaeil
%T A new class of almost complex structures on tangent bundle of a Riemannian manifold
%J Communications in Mathematics
%D 2018
%P 137-145
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a4/
%G en
%F COMIM_2018__26_2_a4
Baghban, Amir; Abedi, Esmaeil. A new class of almost complex structures on tangent bundle of a Riemannian manifold. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 137-145. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a4/