A new class of almost complex structures on tangent bundle of a Riemannian manifold
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 137-145
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, the standard almost complex structure on the tangent bunle of a Riemannian manifold will be generalized. We will generalize the standard one to the new ones such that the induced $(0,2)$-tensor on the tangent bundle using these structures and Liouville $1$-form will be a Riemannian metric. Moreover, under the integrability condition, the curvature operator of the base manifold will be classified.
Classification :
32Q60, 58A30
Keywords: Almost complex structure; curvature operator; integrability; tangent bundle
Keywords: Almost complex structure; curvature operator; integrability; tangent bundle
@article{COMIM_2018__26_2_a4,
author = {Baghban, Amir and Abedi, Esmaeil},
title = {A new class of almost complex structures on tangent bundle of a {Riemannian} manifold},
journal = {Communications in Mathematics},
pages = {137--145},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2018},
mrnumber = {3898198},
zbl = {07058960},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a4/}
}
TY - JOUR AU - Baghban, Amir AU - Abedi, Esmaeil TI - A new class of almost complex structures on tangent bundle of a Riemannian manifold JO - Communications in Mathematics PY - 2018 SP - 137 EP - 145 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a4/ LA - en ID - COMIM_2018__26_2_a4 ER -
Baghban, Amir; Abedi, Esmaeil. A new class of almost complex structures on tangent bundle of a Riemannian manifold. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 137-145. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a4/