A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 127-136
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds.
Classification :
53C15, 53C25, 53D15
Keywords: Contact metric manifold; curvature tensor; Ricci tensor; Ricci operator.
Keywords: Contact metric manifold; curvature tensor; Ricci tensor; Ricci operator.
@article{COMIM_2018__26_2_a3,
author = {Ingalahalli, Gurupadavva and Bagewadi, C.S.},
title = {A {Study} on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds},
journal = {Communications in Mathematics},
pages = {127--136},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2018},
mrnumber = {3898194},
zbl = {07058956},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/}
}
TY - JOUR AU - Ingalahalli, Gurupadavva AU - Bagewadi, C.S. TI - A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds JO - Communications in Mathematics PY - 2018 SP - 127 EP - 136 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/ LA - en ID - COMIM_2018__26_2_a3 ER -
%0 Journal Article %A Ingalahalli, Gurupadavva %A Bagewadi, C.S. %T A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds %J Communications in Mathematics %D 2018 %P 127-136 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/ %G en %F COMIM_2018__26_2_a3
Ingalahalli, Gurupadavva; Bagewadi, C.S. A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 127-136. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/