Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{COMIM_2018__26_2_a3, author = {Ingalahalli, Gurupadavva and Bagewadi, C.S.}, title = {A {Study} on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds}, journal = {Communications in Mathematics}, pages = {127--136}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2018}, mrnumber = {3898194}, zbl = {07058956}, language = {en}, url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/} }
TY - JOUR AU - Ingalahalli, Gurupadavva AU - Bagewadi, C.S. TI - A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds JO - Communications in Mathematics PY - 2018 SP - 127 EP - 136 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/ LA - en ID - COMIM_2018__26_2_a3 ER -
%0 Journal Article %A Ingalahalli, Gurupadavva %A Bagewadi, C.S. %T A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds %J Communications in Mathematics %D 2018 %P 127-136 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/ %G en %F COMIM_2018__26_2_a3
Ingalahalli, Gurupadavva; Bagewadi, C.S. A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 127-136. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/