A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 127-136.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study $\phi $-recurrence $\tau $-curvature tensor in\\ $(k,\mu )$-contact metric manifolds.
Classification : 53C15, 53C25, 53D15
Keywords: Contact metric manifold; curvature tensor; Ricci tensor; Ricci operator.
@article{COMIM_2018__26_2_a3,
     author = {Ingalahalli, Gurupadavva and Bagewadi, C.S.},
     title = {A {Study} on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds},
     journal = {Communications in Mathematics},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     mrnumber = {3898194},
     zbl = {07058956},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/}
}
TY  - JOUR
AU  - Ingalahalli, Gurupadavva
AU  - Bagewadi, C.S.
TI  - A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
JO  - Communications in Mathematics
PY  - 2018
SP  - 127
EP  - 136
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/
LA  - en
ID  - COMIM_2018__26_2_a3
ER  - 
%0 Journal Article
%A Ingalahalli, Gurupadavva
%A Bagewadi, C.S.
%T A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds
%J Communications in Mathematics
%D 2018
%P 127-136
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/
%G en
%F COMIM_2018__26_2_a3
Ingalahalli, Gurupadavva; Bagewadi, C.S. A Study on $\phi $-recurrence $\tau $-curvature tensor in $(k,\mu )$-contact metric manifolds. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 127-136. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a3/