Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 99-111
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The $q$-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.
Classification :
05A30, 33C20
Keywords: Terminating $q$-series; the $q$-derivative operator; well-poised series; balanced series; Pfaff-Saalschüutz summation theorem; Gasper's $q$-Karlsson-Minton formula
Keywords: Terminating $q$-series; the $q$-derivative operator; well-poised series; balanced series; Pfaff-Saalschüutz summation theorem; Gasper's $q$-Karlsson-Minton formula
@article{COMIM_2018__26_2_a1,
author = {Wang, Xiaoyuan and Chu, Wenchang},
title = {Approach of $q${-Derivative} {Operators} to {Terminating} $q${-Series} {Formulae}},
journal = {Communications in Mathematics},
pages = {99--111},
publisher = {mathdoc},
volume = {26},
number = {2},
year = {2018},
mrnumber = {3898196},
zbl = {1412.33015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a1/}
}
TY - JOUR AU - Wang, Xiaoyuan AU - Chu, Wenchang TI - Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae JO - Communications in Mathematics PY - 2018 SP - 99 EP - 111 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a1/ LA - en ID - COMIM_2018__26_2_a1 ER -
Wang, Xiaoyuan; Chu, Wenchang. Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 99-111. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a1/