Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 99-111.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The $q$-derivative operator approach is illustrated by reviewing several typical summation formulae of terminating basic hypergeometric series.
Classification : 05A30, 33C20
Keywords: Terminating $q$-series; the $q$-derivative operator; well-poised series; balanced series; Pfaff-Saalschüutz summation theorem; Gasper's $q$-Karlsson-Minton formula
@article{COMIM_2018__26_2_a1,
     author = {Wang, Xiaoyuan and Chu, Wenchang},
     title = {Approach of $q${-Derivative} {Operators} to {Terminating} $q${-Series} {Formulae}},
     journal = {Communications in Mathematics},
     pages = {99--111},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     mrnumber = {3898196},
     zbl = {1412.33015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a1/}
}
TY  - JOUR
AU  - Wang, Xiaoyuan
AU  - Chu, Wenchang
TI  - Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae
JO  - Communications in Mathematics
PY  - 2018
SP  - 99
EP  - 111
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a1/
LA  - en
ID  - COMIM_2018__26_2_a1
ER  - 
%0 Journal Article
%A Wang, Xiaoyuan
%A Chu, Wenchang
%T Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae
%J Communications in Mathematics
%D 2018
%P 99-111
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a1/
%G en
%F COMIM_2018__26_2_a1
Wang, Xiaoyuan; Chu, Wenchang. Approach of $q$-Derivative Operators to Terminating $q$-Series Formulae. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 99-111. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a1/