On some extremal problems in Bergman spaces in weakly pseudoconvex domains
Communications in Mathematics, Tome 26 (2018) no. 2, pp. 83-97.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider and solve extremal problems in various bounded weakly pseudoconvex domains in $\mathbb {C}^{n}$ based on recent results on boundedness of Bergman projection with positive Bergman kernel in Bergman spaces $A_{\alpha }^{p}$ in such type domains. We provide some new sharp theorems for distance function in Bergman spaces in bounded weakly pseudoconvex domains with natural additional condition on Bergman representation formula.
Classification : 42B15, 42B30
Keywords: Bergman spaces; distance estimates; pseudoconvex domains; analytic functions
@article{COMIM_2018__26_2_a0,
     author = {Shamoyan, Romi F. and Mihi\'c, Olivera R.},
     title = {On some extremal problems in {Bergman} spaces in weakly pseudoconvex domains},
     journal = {Communications in Mathematics},
     pages = {83--97},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2018},
     mrnumber = {3898195},
     zbl = {07058957},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a0/}
}
TY  - JOUR
AU  - Shamoyan, Romi F.
AU  - Mihić, Olivera R.
TI  - On some extremal problems in Bergman spaces in weakly pseudoconvex domains
JO  - Communications in Mathematics
PY  - 2018
SP  - 83
EP  - 97
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a0/
LA  - en
ID  - COMIM_2018__26_2_a0
ER  - 
%0 Journal Article
%A Shamoyan, Romi F.
%A Mihić, Olivera R.
%T On some extremal problems in Bergman spaces in weakly pseudoconvex domains
%J Communications in Mathematics
%D 2018
%P 83-97
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a0/
%G en
%F COMIM_2018__26_2_a0
Shamoyan, Romi F.; Mihić, Olivera R. On some extremal problems in Bergman spaces in weakly pseudoconvex domains. Communications in Mathematics, Tome 26 (2018) no. 2, pp. 83-97. http://geodesic.mathdoc.fr/item/COMIM_2018__26_2_a0/