Area Nevanlinna type classes of analytic functions in the unit disk and related spaces
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 47-76.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The survey collects many recent advances on area Nevanlinna type classes and related spaces of analytic functions in the unit disk concerning zero sets and factorization representations of these classes and discusses approaches, used in proofs of these results.
Classification : 30-02, 30C15, 30D35, 30E20, 30H15, 31A10
Keywords: Analytic function; area Nevanlinna type spaces; zero sets; factorization representation; meromorphic function; subharmonic function.
@article{COMIM_2018__26_1_a4,
     author = {Shamoyan, Romi and Maksakov, Seraphim},
     title = {Area {Nevanlinna} type classes of analytic functions in the unit disk and related spaces},
     journal = {Communications in Mathematics},
     pages = {47--76},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     mrnumber = {3827143},
     zbl = {1404.30061},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/}
}
TY  - JOUR
AU  - Shamoyan, Romi
AU  - Maksakov, Seraphim
TI  - Area Nevanlinna type classes of analytic functions in the unit disk and related spaces
JO  - Communications in Mathematics
PY  - 2018
SP  - 47
EP  - 76
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/
LA  - en
ID  - COMIM_2018__26_1_a4
ER  - 
%0 Journal Article
%A Shamoyan, Romi
%A Maksakov, Seraphim
%T Area Nevanlinna type classes of analytic functions in the unit disk and related spaces
%J Communications in Mathematics
%D 2018
%P 47-76
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/
%G en
%F COMIM_2018__26_1_a4
Shamoyan, Romi; Maksakov, Seraphim. Area Nevanlinna type classes of analytic functions in the unit disk and related spaces. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 47-76. http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/