Area Nevanlinna type classes of analytic functions in the unit disk and related spaces
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 47-76
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The survey collects many recent advances on area Nevanlinna type classes and related spaces of analytic functions in the unit disk concerning zero sets and factorization representations of these classes and discusses approaches, used in proofs of these results.
Classification :
30-02, 30C15, 30D35, 30E20, 30H15, 31A10
Keywords: Analytic function; area Nevanlinna type spaces; zero sets; factorization representation; meromorphic function; subharmonic function.
Keywords: Analytic function; area Nevanlinna type spaces; zero sets; factorization representation; meromorphic function; subharmonic function.
@article{COMIM_2018__26_1_a4,
author = {Shamoyan, Romi and Maksakov, Seraphim},
title = {Area {Nevanlinna} type classes of analytic functions in the unit disk and related spaces},
journal = {Communications in Mathematics},
pages = {47--76},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2018},
mrnumber = {3827143},
zbl = {1404.30061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/}
}
TY - JOUR AU - Shamoyan, Romi AU - Maksakov, Seraphim TI - Area Nevanlinna type classes of analytic functions in the unit disk and related spaces JO - Communications in Mathematics PY - 2018 SP - 47 EP - 76 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/ LA - en ID - COMIM_2018__26_1_a4 ER -
%0 Journal Article %A Shamoyan, Romi %A Maksakov, Seraphim %T Area Nevanlinna type classes of analytic functions in the unit disk and related spaces %J Communications in Mathematics %D 2018 %P 47-76 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/ %G en %F COMIM_2018__26_1_a4
Shamoyan, Romi; Maksakov, Seraphim. Area Nevanlinna type classes of analytic functions in the unit disk and related spaces. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 47-76. http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a4/