The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 31-45
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study the properties of the weighted space $H_{2,\alpha }^k(\Omega )$ and weighted set $W_{2,\alpha }^k(\Omega ,\delta )$ for boundary value problem with singularity.
Classification :
46E35
Keywords: weighted functional spaces; weighted functional sets; weighted Sobolev spaces.
Keywords: weighted functional spaces; weighted functional sets; weighted Sobolev spaces.
@article{COMIM_2018__26_1_a3,
author = {Rukavishnikov, V.A. and Matveeva, E.V. and Rukavishnikova, E.I.},
title = {The {Properties} of the {Weighted} {Space} $H_{2,\alpha }^k(\Omega )$ and {Weighted} {Set} $W_{2,\alpha }^k(\Omega ,\delta )$},
journal = {Communications in Mathematics},
pages = {31--45},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2018},
mrnumber = {3827142},
zbl = {1411.46032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/}
}
TY - JOUR
AU - Rukavishnikov, V.A.
AU - Matveeva, E.V.
AU - Rukavishnikova, E.I.
TI - The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
JO - Communications in Mathematics
PY - 2018
SP - 31
EP - 45
VL - 26
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/
LA - en
ID - COMIM_2018__26_1_a3
ER -
%0 Journal Article
%A Rukavishnikov, V.A.
%A Matveeva, E.V.
%A Rukavishnikova, E.I.
%T The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
%J Communications in Mathematics
%D 2018
%P 31-45
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/
%G en
%F COMIM_2018__26_1_a3
Rukavishnikov, V.A.; Matveeva, E.V.; Rukavishnikova, E.I. The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 31-45. http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/