The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 31-45.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the properties of the weighted space $H_{2,\alpha }^k(\Omega )$ and weighted set $W_{2,\alpha }^k(\Omega ,\delta )$ for boundary value problem with singularity.
Classification : 46E35
Keywords: weighted functional spaces; weighted functional sets; weighted Sobolev spaces.
@article{COMIM_2018__26_1_a3,
     author = {Rukavishnikov, V.A. and Matveeva, E.V. and Rukavishnikova, E.I.},
     title = {The {Properties} of the {Weighted} {Space} $H_{2,\alpha }^k(\Omega )$ and {Weighted} {Set} $W_{2,\alpha }^k(\Omega ,\delta )$},
     journal = {Communications in Mathematics},
     pages = {31--45},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     mrnumber = {3827142},
     zbl = {1411.46032},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/}
}
TY  - JOUR
AU  - Rukavishnikov, V.A.
AU  - Matveeva, E.V.
AU  - Rukavishnikova, E.I.
TI  - The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
JO  - Communications in Mathematics
PY  - 2018
SP  - 31
EP  - 45
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/
LA  - en
ID  - COMIM_2018__26_1_a3
ER  - 
%0 Journal Article
%A Rukavishnikov, V.A.
%A Matveeva, E.V.
%A Rukavishnikova, E.I.
%T The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$
%J Communications in Mathematics
%D 2018
%P 31-45
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/
%G en
%F COMIM_2018__26_1_a3
Rukavishnikov, V.A.; Matveeva, E.V.; Rukavishnikova, E.I. The Properties of the Weighted Space $H_{2,\alpha }^k(\Omega )$ and Weighted Set $W_{2,\alpha }^k(\Omega ,\delta )$. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 31-45. http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a3/