Nonlinear $\ast $-Lie higher derivations of standard operator algebras
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 15-29
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathcal {H}$ be an infinite-dimensional complex Hilbert space and $\mathfrak {A}$~be a standard operator algebra on $\mathcal {H}$ which is closed under the adjoint operation. It is shown that every nonlinear $\ast $-Lie higher derivation $\mathcal {D}=\{{\delta _n}\}_{n\in \mathbb {N}}$ of $\mathfrak {A}$ is automatically an additive higher derivation on $\mathfrak {A}$. Moreover, $\mathcal {D}=\{{\delta _n}\}_{n\in \mathbb {N}}$ is an inner $\ast $-higher derivation.
Classification :
16W25, 46K15, 47B47
Keywords: Nonlinear $\ast $-Lie derivation; nonlinear $\ast $-Lie higher derivation; additive $\ast $-higher derivation; standard operator algebra.
Keywords: Nonlinear $\ast $-Lie derivation; nonlinear $\ast $-Lie higher derivation; additive $\ast $-higher derivation; standard operator algebra.
@article{COMIM_2018__26_1_a2,
author = {Ashraf, Mohammad and Ali, Shakir and Wani, Bilal Ahmad},
title = {Nonlinear $\ast ${-Lie} higher derivations of standard operator algebras},
journal = {Communications in Mathematics},
pages = {15--29},
publisher = {mathdoc},
volume = {26},
number = {1},
year = {2018},
mrnumber = {3827141},
zbl = {1410.16038},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/}
}
TY - JOUR AU - Ashraf, Mohammad AU - Ali, Shakir AU - Wani, Bilal Ahmad TI - Nonlinear $\ast $-Lie higher derivations of standard operator algebras JO - Communications in Mathematics PY - 2018 SP - 15 EP - 29 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/ LA - en ID - COMIM_2018__26_1_a2 ER -
%0 Journal Article %A Ashraf, Mohammad %A Ali, Shakir %A Wani, Bilal Ahmad %T Nonlinear $\ast $-Lie higher derivations of standard operator algebras %J Communications in Mathematics %D 2018 %P 15-29 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/ %G en %F COMIM_2018__26_1_a2
Ashraf, Mohammad; Ali, Shakir; Wani, Bilal Ahmad. Nonlinear $\ast $-Lie higher derivations of standard operator algebras. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 15-29. http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/