Nonlinear $\ast $-Lie higher derivations of standard operator algebras
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 15-29.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathcal {H}$ be an infinite-dimensional complex Hilbert space and $\mathfrak {A}$~be a standard operator algebra on $\mathcal {H}$ which is closed under the adjoint operation. It is shown that every nonlinear $\ast $-Lie higher derivation $\mathcal {D}=\{{\delta _n}\}_{n\in \mathbb {N}}$ of $\mathfrak {A}$ is automatically an additive higher derivation on $\mathfrak {A}$. Moreover, $\mathcal {D}=\{{\delta _n}\}_{n\in \mathbb {N}}$ is an inner $\ast $-higher derivation.
Classification : 16W25, 46K15, 47B47
Keywords: Nonlinear $\ast $-Lie derivation; nonlinear $\ast $-Lie higher derivation; additive $\ast $-higher derivation; standard operator algebra.
@article{COMIM_2018__26_1_a2,
     author = {Ashraf, Mohammad and Ali, Shakir and Wani, Bilal Ahmad},
     title = {Nonlinear $\ast ${-Lie} higher derivations of standard operator algebras},
     journal = {Communications in Mathematics},
     pages = {15--29},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     mrnumber = {3827141},
     zbl = {1410.16038},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
AU  - Ali, Shakir
AU  - Wani, Bilal Ahmad
TI  - Nonlinear $\ast $-Lie higher derivations of standard operator algebras
JO  - Communications in Mathematics
PY  - 2018
SP  - 15
EP  - 29
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/
LA  - en
ID  - COMIM_2018__26_1_a2
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%A Ali, Shakir
%A Wani, Bilal Ahmad
%T Nonlinear $\ast $-Lie higher derivations of standard operator algebras
%J Communications in Mathematics
%D 2018
%P 15-29
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/
%G en
%F COMIM_2018__26_1_a2
Ashraf, Mohammad; Ali, Shakir; Wani, Bilal Ahmad. Nonlinear $\ast $-Lie higher derivations of standard operator algebras. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 15-29. http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a2/