On self-similar subgroups in the sense of IFS
Communications in Mathematics, Tome 26 (2018) no. 1, pp. 1-10.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we first give several properties with respect to subgroups of self-similar groups in the sense of iterated function system (IFS). We then prove that some subgroups of $p$-adic numbers $\mathbb{Q}_{p}$ are strong self-similar in the sense of IFS.
Classification : 11E95, 28A80, 47H10
Keywords: Self-similar group; Cantor set; $p$-adic integers.
@article{COMIM_2018__26_1_a0,
     author = {Saltan, Mustafa},
     title = {On self-similar subgroups in the sense of {IFS}},
     journal = {Communications in Mathematics},
     pages = {1--10},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2018},
     mrnumber = {3827139},
     zbl = {06996469},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a0/}
}
TY  - JOUR
AU  - Saltan, Mustafa
TI  - On self-similar subgroups in the sense of IFS
JO  - Communications in Mathematics
PY  - 2018
SP  - 1
EP  - 10
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a0/
LA  - en
ID  - COMIM_2018__26_1_a0
ER  - 
%0 Journal Article
%A Saltan, Mustafa
%T On self-similar subgroups in the sense of IFS
%J Communications in Mathematics
%D 2018
%P 1-10
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a0/
%G en
%F COMIM_2018__26_1_a0
Saltan, Mustafa. On self-similar subgroups in the sense of IFS. Communications in Mathematics, Tome 26 (2018) no. 1, pp. 1-10. http://geodesic.mathdoc.fr/item/COMIM_2018__26_1_a0/