The Existence of a Generalized Solution of an $m$-Point Nonlocal Boundary Value Problem
Communications in Mathematics, Tome 25 (2017) no. 2, pp. 159-169.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

An $m$-point nonlocal boundary value problem is posed for quasilinear differential equations of first order on the plane. Nonlocal boundary value problems are investigated using the algorithm of reducing nonlocal boundary value problems to a sequence of Riemann-Hilbert problems for a generalized analytic function. The conditions for the existence and uniqueness of a generalized solution in the space are considered.
Classification : 35D05
Keywords: Nonlocal boundary value problem; generalized solution.
@article{COMIM_2017__25_2_a5,
     author = {Devadze, David},
     title = {The {Existence} of a {Generalized} {Solution} of an $m${-Point} {Nonlocal} {Boundary} {Value} {Problem}},
     journal = {Communications in Mathematics},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2017},
     mrnumber = {3745435},
     zbl = {06888206},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a5/}
}
TY  - JOUR
AU  - Devadze, David
TI  - The Existence of a Generalized Solution of an $m$-Point Nonlocal Boundary Value Problem
JO  - Communications in Mathematics
PY  - 2017
SP  - 159
EP  - 169
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a5/
LA  - en
ID  - COMIM_2017__25_2_a5
ER  - 
%0 Journal Article
%A Devadze, David
%T The Existence of a Generalized Solution of an $m$-Point Nonlocal Boundary Value Problem
%J Communications in Mathematics
%D 2017
%P 159-169
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a5/
%G en
%F COMIM_2017__25_2_a5
Devadze, David. The Existence of a Generalized Solution of an $m$-Point Nonlocal Boundary Value Problem. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 159-169. http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a5/