Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions
Communications in Mathematics, Tome 25 (2017) no. 2, pp. 79-87.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We study the existence of solutions of the system $$ \begin {cases} (\phi _1(u_1'(t)))'= f_1(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, (\phi _2(u_2'(t)))'= f_2(t,u_1(t),u_2(t),u'_1(t),u_2'(t)),\qquad \text {a.e. $t\in [0,T]$}, \end {cases} $$ submitted to nonlinear coupled boundary conditions on $[0,T]$ where $\phi _1,\phi _2\colon (-a, a)\rightarrow \mathbb {R}$, with $0 a +\infty $, are two increasing homeomorphisms such that $\phi _1(0) = \phi _2(0) = 0$, and $f_i:[0,T]\times \mathbb {R}^{4}\rightarrow \mathbb {R}$, $i\in \{1,2\}$ are two $L^1$-Carathéodory functions. Using some new conditions and Schauder fixed point Theorem, we obtain solvability result.
Classification : 34B15
Keywords: $\phi $-Laplacian; $L^1$-Carath\'eodory function; Schauder fixed-point Theorem.
@article{COMIM_2017__25_2_a0,
     author = {Goli, Konan Charles Etienne and Adj\'e, Assohoun},
     title = {Existence of solutions for a coupled system with $\phi ${-Laplacian} operators and nonlinear coupled boundary conditions},
     journal = {Communications in Mathematics},
     pages = {79--87},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2017},
     mrnumber = {3745430},
     zbl = {1391.34052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a0/}
}
TY  - JOUR
AU  - Goli, Konan Charles Etienne
AU  - Adjé, Assohoun
TI  - Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions
JO  - Communications in Mathematics
PY  - 2017
SP  - 79
EP  - 87
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a0/
LA  - en
ID  - COMIM_2017__25_2_a0
ER  - 
%0 Journal Article
%A Goli, Konan Charles Etienne
%A Adjé, Assohoun
%T Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions
%J Communications in Mathematics
%D 2017
%P 79-87
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a0/
%G en
%F COMIM_2017__25_2_a0
Goli, Konan Charles Etienne; Adjé, Assohoun. Existence of solutions for a coupled system with $\phi $-Laplacian operators and nonlinear coupled boundary conditions. Communications in Mathematics, Tome 25 (2017) no. 2, pp. 79-87. http://geodesic.mathdoc.fr/item/COMIM_2017__25_2_a0/