Generalized Higher Derivations on Lie Ideals of Triangular Algebras
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 35-53.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\mathfrak {A} = \begin {pmatrix}\mathcal {A} \mathcal {M}\\ \mathcal {B} \end {pmatrix}$ be the triangular algebra consisting of unital algebras $\mathcal {A}$ and $\mathcal {B}$ over a commutative ring $R$ with identity $1$ and $ \mathcal {M}$ be a unital $ \mathcal {(A, B)}$-bimodule. An additive subgroup $ \mathfrak { L }$ of $ \mathfrak { A } $ is said to be a Lie ideal of $\mathfrak {A}$ if $[\mathfrak {L},\mathfrak {A}]\subseteq \mathfrak {L}$. A non-central square closed Lie ideal $\mathfrak { L }$ of $\mathfrak { A }$ is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on $\mathfrak {A}$, every generalized Jordan triple higher derivation of $ \mathfrak {L}$ into $\mathfrak {A}$ is a generalized higher derivation of $ \mathfrak {L}$ into $ \mathfrak { A }$.
Classification : 15A78, 16W25, 47L35
Keywords: Admissible Lie Ideals; triangular algebra; generalized higher derivation; generalized Jordan higher derivation; generalized Jordan triple higher derivation
@article{COMIM_2017__25_1_a4,
     author = {Ashraf, Mohammad and Parveen, Nazia and Wani, Bilal Ahmad},
     title = {Generalized {Higher} {Derivations} on {Lie} {Ideals} of {Triangular} {Algebras}},
     journal = {Communications in Mathematics},
     pages = {35--53},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2017},
     mrnumber = {3667075},
     zbl = {1390.16039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/}
}
TY  - JOUR
AU  - Ashraf, Mohammad
AU  - Parveen, Nazia
AU  - Wani, Bilal Ahmad
TI  - Generalized Higher Derivations on Lie Ideals of Triangular Algebras
JO  - Communications in Mathematics
PY  - 2017
SP  - 35
EP  - 53
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/
LA  - en
ID  - COMIM_2017__25_1_a4
ER  - 
%0 Journal Article
%A Ashraf, Mohammad
%A Parveen, Nazia
%A Wani, Bilal Ahmad
%T Generalized Higher Derivations on Lie Ideals of Triangular Algebras
%J Communications in Mathematics
%D 2017
%P 35-53
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/
%G en
%F COMIM_2017__25_1_a4
Ashraf, Mohammad; Parveen, Nazia; Wani, Bilal Ahmad. Generalized Higher Derivations on Lie Ideals of Triangular Algebras. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/