Generalized Higher Derivations on Lie Ideals of Triangular Algebras
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 35-53
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\mathfrak {A} = \begin {pmatrix}\mathcal {A} \mathcal {M}\\ \mathcal {B} \end {pmatrix}$ be the triangular algebra consisting of unital algebras $\mathcal {A}$ and $\mathcal {B}$ over a commutative ring $R$ with identity $1$ and $ \mathcal {M}$ be a unital $ \mathcal {(A, B)}$-bimodule. An additive subgroup $ \mathfrak { L }$ of $ \mathfrak { A } $ is said to be a Lie ideal of $\mathfrak {A}$ if $[\mathfrak {L},\mathfrak {A}]\subseteq \mathfrak {L}$. A non-central square closed Lie ideal $\mathfrak { L }$ of $\mathfrak { A }$ is known as an admissible Lie ideal. The main result of the present paper states that under certain restrictions on $\mathfrak {A}$, every generalized Jordan triple higher derivation of $ \mathfrak {L}$ into $\mathfrak {A}$ is a generalized higher derivation of $ \mathfrak {L}$ into $ \mathfrak { A }$.
Classification :
15A78, 16W25, 47L35
Keywords: Admissible Lie Ideals; triangular algebra; generalized higher derivation; generalized Jordan higher derivation; generalized Jordan triple higher derivation
Keywords: Admissible Lie Ideals; triangular algebra; generalized higher derivation; generalized Jordan higher derivation; generalized Jordan triple higher derivation
@article{COMIM_2017__25_1_a4,
author = {Ashraf, Mohammad and Parveen, Nazia and Wani, Bilal Ahmad},
title = {Generalized {Higher} {Derivations} on {Lie} {Ideals} of {Triangular} {Algebras}},
journal = {Communications in Mathematics},
pages = {35--53},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2017},
mrnumber = {3667075},
zbl = {1390.16039},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/}
}
TY - JOUR AU - Ashraf, Mohammad AU - Parveen, Nazia AU - Wani, Bilal Ahmad TI - Generalized Higher Derivations on Lie Ideals of Triangular Algebras JO - Communications in Mathematics PY - 2017 SP - 35 EP - 53 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/ LA - en ID - COMIM_2017__25_1_a4 ER -
%0 Journal Article %A Ashraf, Mohammad %A Parveen, Nazia %A Wani, Bilal Ahmad %T Generalized Higher Derivations on Lie Ideals of Triangular Algebras %J Communications in Mathematics %D 2017 %P 35-53 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/ %G en %F COMIM_2017__25_1_a4
Ashraf, Mohammad; Parveen, Nazia; Wani, Bilal Ahmad. Generalized Higher Derivations on Lie Ideals of Triangular Algebras. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 35-53. http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a4/