An approximation theorem for solutions of degenerate semilinear elliptic equations
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 21-34
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The main result establishes that a weak solution of degenerate semilinear elliptic equations can be approximated by a sequence of solutions for non-degenerate semilinear elliptic equations.
Classification :
35D30, 35J61, 35J70
Keywords: Degenerate semilinear elliptic equations; weighted Sobolev Spaces.
Keywords: Degenerate semilinear elliptic equations; weighted Sobolev Spaces.
@article{COMIM_2017__25_1_a3,
author = {Cavalheiro, Albo Carlos},
title = {An approximation theorem for solutions of degenerate semilinear elliptic equations},
journal = {Communications in Mathematics},
pages = {21--34},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2017},
mrnumber = {3667074},
zbl = {1391.35141},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a3/}
}
TY - JOUR AU - Cavalheiro, Albo Carlos TI - An approximation theorem for solutions of degenerate semilinear elliptic equations JO - Communications in Mathematics PY - 2017 SP - 21 EP - 34 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a3/ LA - en ID - COMIM_2017__25_1_a3 ER -
Cavalheiro, Albo Carlos. An approximation theorem for solutions of degenerate semilinear elliptic equations. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 21-34. http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a3/