On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 13-20
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\Omega \subset \mathbb{R}^n$ be a bounded starshaped domain and consider the $(p,q)$-Laplacian problem \begin{align*} -\Delta_p u-\Delta_q u = \lambda ({\bf x} )\lvert u\rvert^{p^\star -2} u+\mu |u|^{r-2} u \end{align*} where $\mu$ is a positive parameter, $1 q \le p n$, $r\ge p^{\star}$ and $p^{\star}:=\frac{np}{n-p}$ is the critical Sobolev exponent. In this short note we address the question of non-existence for non-trivial solutions to the $(p, q)$-Laplacian problem. In particular we show the non-existence of non-trivial solutions to the problem by using a method based on Pohozaev identity.
Classification :
35B33, 35J20, 35J92, 58E05
Keywords: Quasi-linear elliptic problem; $(p, q)$-Laplacian operator; Critical Sobolev-Hardy exponent; Starshaped domain.
Keywords: Quasi-linear elliptic problem; $(p, q)$-Laplacian operator; Critical Sobolev-Hardy exponent; Starshaped domain.
@article{COMIM_2017__25_1_a2,
author = {Shahrokhi-Dehkordi, M.S.},
title = {On a class of $(p,q)${-Laplacian} problems involving the critical {Sobolev-Hardy} exponents in starshaped domain},
journal = {Communications in Mathematics},
pages = {13--20},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2017},
mrnumber = {3667073},
zbl = {1391.35170},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a2/}
}
TY - JOUR AU - Shahrokhi-Dehkordi, M.S. TI - On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain JO - Communications in Mathematics PY - 2017 SP - 13 EP - 20 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a2/ LA - en ID - COMIM_2017__25_1_a2 ER -
%0 Journal Article %A Shahrokhi-Dehkordi, M.S. %T On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain %J Communications in Mathematics %D 2017 %P 13-20 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a2/ %G en %F COMIM_2017__25_1_a2
Shahrokhi-Dehkordi, M.S. On a class of $(p,q)$-Laplacian problems involving the critical Sobolev-Hardy exponents in starshaped domain. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 13-20. http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a2/