A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself
Communications in Mathematics, Tome 25 (2017) no. 1, pp. 1-4
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note, we prove that there is no transcendental entire function $f(z)\in \mathbb{Q} [[z]]$ such that $f(\mathbb{Q} )\subseteq \mathbb{Q}$ and $\mathop{\rm den} f(p/q)=F(q)$, for all sufficiently large $q$, where $F(z)\in \mathbb{Z} [z]$.
@article{COMIM_2017__25_1_a0,
author = {Marques, Diego and Silva, Elaine},
title = {A {Note} on {Transcendental} {Power} {Series} {Mapping} the {Set} of {Rational} {Numbers} into {Itself}},
journal = {Communications in Mathematics},
pages = {1--4},
publisher = {mathdoc},
volume = {25},
number = {1},
year = {2017},
mrnumber = {3667071},
zbl = {06888083},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a0/}
}
TY - JOUR AU - Marques, Diego AU - Silva, Elaine TI - A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself JO - Communications in Mathematics PY - 2017 SP - 1 EP - 4 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a0/ LA - en ID - COMIM_2017__25_1_a0 ER -
Marques, Diego; Silva, Elaine. A Note on Transcendental Power Series Mapping the Set of Rational Numbers into Itself. Communications in Mathematics, Tome 25 (2017) no. 1, pp. 1-4. http://geodesic.mathdoc.fr/item/COMIM_2017__25_1_a0/