Homogeneous variational problems and Lagrangian sections
Communications in Mathematics, Tome 24 (2016) no. 2, pp. 115-123.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We define a canonical line bundle over the slit tangent bundle of a manifold, and define a Lagrangian section to be a homogeneous section of this line bundle. When a regularity condition is satisfied the Lagrangian section gives rise to local Finsler functions. For each such section we demonstrate how to construct a canonically parametrized family of geodesics, such that the geodesics of the local Finsler functions are reparametrizations.
Classification : 53C22, 53C60
Keywords: Finsler geometry; line bundle; geodesics
@article{COMIM_2016__24_2_a2,
     author = {Saunders, D.J.},
     title = {Homogeneous variational problems and {Lagrangian} sections},
     journal = {Communications in Mathematics},
     pages = {115--123},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2016},
     mrnumber = {3590209},
     zbl = {1360.53077},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016__24_2_a2/}
}
TY  - JOUR
AU  - Saunders, D.J.
TI  - Homogeneous variational problems and Lagrangian sections
JO  - Communications in Mathematics
PY  - 2016
SP  - 115
EP  - 123
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016__24_2_a2/
LA  - en
ID  - COMIM_2016__24_2_a2
ER  - 
%0 Journal Article
%A Saunders, D.J.
%T Homogeneous variational problems and Lagrangian sections
%J Communications in Mathematics
%D 2016
%P 115-123
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2016__24_2_a2/
%G en
%F COMIM_2016__24_2_a2
Saunders, D.J. Homogeneous variational problems and Lagrangian sections. Communications in Mathematics, Tome 24 (2016) no. 2, pp. 115-123. http://geodesic.mathdoc.fr/item/COMIM_2016__24_2_a2/