Torsion and the second fundamental form for distributions
Communications in Mathematics, Tome 24 (2016) no. 1, pp. 23-28.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The second fundamental form of Riemannian geometry is generalised to the case of a manifold with a linear connection and an integrable distribution. This bilinear form is generally not symmetric and its skew part is the torsion. The form itself is closely related to the shape map of the connection. The codimension one case generalises the traditional shape operator of Riemannian geometry.
Classification : 53B05, 53C05, 58A10
Keywords: Torsion; second fundamental form; shape operator; integrable distributions
@article{COMIM_2016__24_1_a2,
     author = {Prince, Geoff},
     title = {Torsion and the second fundamental form for distributions},
     journal = {Communications in Mathematics},
     pages = {23--28},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2016},
     mrnumber = {3546804},
     zbl = {1354.53027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2016__24_1_a2/}
}
TY  - JOUR
AU  - Prince, Geoff
TI  - Torsion and the second fundamental form for distributions
JO  - Communications in Mathematics
PY  - 2016
SP  - 23
EP  - 28
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2016__24_1_a2/
LA  - en
ID  - COMIM_2016__24_1_a2
ER  - 
%0 Journal Article
%A Prince, Geoff
%T Torsion and the second fundamental form for distributions
%J Communications in Mathematics
%D 2016
%P 23-28
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2016__24_1_a2/
%G en
%F COMIM_2016__24_1_a2
Prince, Geoff. Torsion and the second fundamental form for distributions. Communications in Mathematics, Tome 24 (2016) no. 1, pp. 23-28. http://geodesic.mathdoc.fr/item/COMIM_2016__24_1_a2/