Almost pseudo symmetric Sasakian manifold admitting a type of quarter symmetric metric connection
Communications in Mathematics, Tome 23 (2015) no. 2, pp. 163-169
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In the present paper we have obtained the necessary condition for the existence of almost pseudo symmetric and almost pseudo Ricci symmetric Sasakian manifold admitting a type of quarter symmetric metric connection.
Classification :
53C05, 53C15, 53D10
Keywords: Almost pseudo symmetric manifold; pseudo Ricci symmetric manifold; almost pseudo Ricci symmetric manifold; quarter-symmetric metric connection
Keywords: Almost pseudo symmetric manifold; pseudo Ricci symmetric manifold; almost pseudo Ricci symmetric manifold; quarter-symmetric metric connection
@article{COMIM_2015__23_2_a5,
author = {Venkatesha, Vishnuvardhana S.V.},
title = {Almost pseudo symmetric {Sasakian} manifold admitting a type of quarter symmetric metric connection},
journal = {Communications in Mathematics},
pages = {163--169},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2015},
mrnumber = {3436683},
zbl = {1339.53024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a5/}
}
TY - JOUR AU - Venkatesha, Vishnuvardhana S.V. TI - Almost pseudo symmetric Sasakian manifold admitting a type of quarter symmetric metric connection JO - Communications in Mathematics PY - 2015 SP - 163 EP - 169 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a5/ LA - en ID - COMIM_2015__23_2_a5 ER -
%0 Journal Article %A Venkatesha, Vishnuvardhana S.V. %T Almost pseudo symmetric Sasakian manifold admitting a type of quarter symmetric metric connection %J Communications in Mathematics %D 2015 %P 163-169 %V 23 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a5/ %G en %F COMIM_2015__23_2_a5
Venkatesha, Vishnuvardhana S.V. Almost pseudo symmetric Sasakian manifold admitting a type of quarter symmetric metric connection. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a5/