On the equivalence of control systems on Lie groups
Communications in Mathematics, Tome 23 (2015) no. 2, pp. 119-129.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.
Classification : 22E60, 93B27
Keywords: left-invariant control system; state space equivalence; detached feedback equivalence
@article{COMIM_2015__23_2_a2,
     author = {Biggs, Rory and Remsing, Claudiu C.},
     title = {On the equivalence of control systems on {Lie} groups},
     journal = {Communications in Mathematics},
     pages = {119--129},
     publisher = {mathdoc},
     volume = {23},
     number = {2},
     year = {2015},
     mrnumber = {3436680},
     zbl = {1338.93118},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a2/}
}
TY  - JOUR
AU  - Biggs, Rory
AU  - Remsing, Claudiu C.
TI  - On the equivalence of control systems on Lie groups
JO  - Communications in Mathematics
PY  - 2015
SP  - 119
EP  - 129
VL  - 23
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a2/
LA  - en
ID  - COMIM_2015__23_2_a2
ER  - 
%0 Journal Article
%A Biggs, Rory
%A Remsing, Claudiu C.
%T On the equivalence of control systems on Lie groups
%J Communications in Mathematics
%D 2015
%P 119-129
%V 23
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a2/
%G en
%F COMIM_2015__23_2_a2
Biggs, Rory; Remsing, Claudiu C. On the equivalence of control systems on Lie groups. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 119-129. http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a2/