Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{COMIM_2015__23_2_a1, author = {Jena, Susil Kumar}, title = {On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$}, journal = {Communications in Mathematics}, pages = {113--117}, publisher = {mathdoc}, volume = {23}, number = {2}, year = {2015}, mrnumber = {3436679}, zbl = {1350.11045}, language = {en}, url = {http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a1/} }
Jena, Susil Kumar. On $X_1^4+4X_2^4=X_3^8+4X_4^8$ and $Y_1^4=Y_2^4+Y_3^4+4Y_4^4$. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 113-117. http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a1/