The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds
Communications in Mathematics, Tome 23 (2015) no. 2, pp. 101-112
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study Lipschitz-Fredholm vector fields on bounded Fréchet-Finsler manifolds. In this context we generalize the Morse-Sard-Brown theorem, asserting that if $M$ is a connected smooth bounded Fréchet-Finsler manifold endowed with a connection $\mathcal {K}$ and if $\xi$ is a smooth Lipschitz-Fredholm vector field on $M$ with respect to $\mathcal {K}$ which satisfies condition (WCV), then, for any smooth functional $l$ on $M$ which is associated to $\xi$, the set of the critical values of $l$ is of first category in $\mathbb{R}$. Therefore, the set of the regular values of $l$ is a residual Baire subset of $\mathbb {R}$.
Classification :
58B15, 58B20, 58K05
Keywords: Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields
Keywords: Fréchet manifolds; condition (CV); Finsler structures; Fredholm vector fields
@article{COMIM_2015__23_2_a0,
author = {Eftekharinasab, Kaveh},
title = {The {Morse-Sard-Brown} {Theorem} for {Functionals} on {Bounded} {Fr\'echet-Finsler} {Manifolds}},
journal = {Communications in Mathematics},
pages = {101--112},
publisher = {mathdoc},
volume = {23},
number = {2},
year = {2015},
mrnumber = {3436678},
zbl = {1338.58027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a0/}
}
TY - JOUR AU - Eftekharinasab, Kaveh TI - The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds JO - Communications in Mathematics PY - 2015 SP - 101 EP - 112 VL - 23 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a0/ LA - en ID - COMIM_2015__23_2_a0 ER -
Eftekharinasab, Kaveh. The Morse-Sard-Brown Theorem for Functionals on Bounded Fréchet-Finsler Manifolds. Communications in Mathematics, Tome 23 (2015) no. 2, pp. 101-112. http://geodesic.mathdoc.fr/item/COMIM_2015__23_2_a0/