Newton transformations on null hypersurfaces
Communications in Mathematics, Tome 23 (2015) no. 1, pp. 57-83.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Any rigged null hypersurface is provided with two shape operators: with respect to the rigging and the rigged vector fields respectively. The present paper deals with the Newton transformations built on both of them and establishes related curvature properties. The laters are used to derive necessary and sufficient conditions for higher-order umbilicity and maximality we introduced in passing, and develop general Minkowski-type formulas for the null hypersurface, supported by some physical models in perfect-fluid space-times.
Classification : 53B30, 53C42, 53Z05
Keywords: Null hypersurfaces; null rigging; Newton transformations; Minkowski integral formulas.
@article{COMIM_2015__23_1_a4,
     author = {Fotsing, Cyriaque Atindogb\'e and Hans Tetsing},
     title = {Newton transformations on null hypersurfaces},
     journal = {Communications in Mathematics},
     pages = {57--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2015},
     mrnumber = {3394078},
     zbl = {1342.53028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2015__23_1_a4/}
}
TY  - JOUR
AU  - Fotsing, Cyriaque Atindogbé and Hans Tetsing
TI  - Newton transformations on null hypersurfaces
JO  - Communications in Mathematics
PY  - 2015
SP  - 57
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2015__23_1_a4/
LA  - en
ID  - COMIM_2015__23_1_a4
ER  - 
%0 Journal Article
%A Fotsing, Cyriaque Atindogbé and Hans Tetsing
%T Newton transformations on null hypersurfaces
%J Communications in Mathematics
%D 2015
%P 57-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2015__23_1_a4/
%G en
%F COMIM_2015__23_1_a4
Fotsing, Cyriaque Atindogbé and Hans Tetsing. Newton transformations on null hypersurfaces. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 57-83. http://geodesic.mathdoc.fr/item/COMIM_2015__23_1_a4/