Existence of solutions for Navier problems with degenerate nonlinear elliptic equations
Communications in Mathematics, Tome 23 (2015) no. 1, pp. 33-45
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we are interested in the existence and uniqueness of solutions for the Navier problem associated to the degenerate nonlinear elliptic equations \begin {equation*} \Delta (v(x)\,\vert \Delta u\vert ^{q-2}\Delta u) -\sum _{j=1}^n D_j\bigl [\omega (x) {\cal A}_j(x, u, {\nabla }u)\bigr ] = f_0(x) - \sum _{j=1}^nD_jf_j(x), \text { in }\Omega \end {equation*} in the setting of the weighted Sobolev spaces.
Classification :
35J60, 35J70
Keywords: degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem
Keywords: degenerate nolinear elliptic equations; weighted Sobolev spaces; Navier problem
@article{COMIM_2015__23_1_a2,
author = {Cavalheiro, Albo Carlos},
title = {Existence of solutions for {Navier} problems with degenerate nonlinear elliptic equations},
journal = {Communications in Mathematics},
pages = {33--45},
publisher = {mathdoc},
volume = {23},
number = {1},
year = {2015},
mrnumber = {3394076},
zbl = {1353.35167},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2015__23_1_a2/}
}
TY - JOUR AU - Cavalheiro, Albo Carlos TI - Existence of solutions for Navier problems with degenerate nonlinear elliptic equations JO - Communications in Mathematics PY - 2015 SP - 33 EP - 45 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2015__23_1_a2/ LA - en ID - COMIM_2015__23_1_a2 ER -
Cavalheiro, Albo Carlos. Existence of solutions for Navier problems with degenerate nonlinear elliptic equations. Communications in Mathematics, Tome 23 (2015) no. 1, pp. 33-45. http://geodesic.mathdoc.fr/item/COMIM_2015__23_1_a2/