On a binary recurrent sequence of polynomials
Communications in Mathematics, Tome 22 (2014) no. 2, pp. 151-157
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we study the properties of the sequence of polynomials given by $g_0=0,~g_1=1$, $g_{n+1}=g_n+\Delta g_{n-1}$ for $n\ge 1$, where $\Delta \in {\mathbb F}_q[t]$ is non-constant and the characteristic of ${\mathbb F}_q$ is $2$. This complements some results from R. Euler, L.H. Gallardo: On explicit formulae and linear recurrent sequences, Acta Math. Univ. Comenianae, 80 (2011) 213-219.
Classification :
11B39, 11T06, 11T55
Keywords: sequences of binary polynomials; Stern-Brocot sequence; perfect fields of characteristic 2
Keywords: sequences of binary polynomials; Stern-Brocot sequence; perfect fields of characteristic 2
@article{COMIM_2014__22_2_a3,
author = {Euler, Reinhardt and Gallardo, Luis H. and Luca, Florian},
title = {On a binary recurrent sequence of polynomials},
journal = {Communications in Mathematics},
pages = {151--157},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2014},
mrnumber = {3303136},
zbl = {06410232},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a3/}
}
TY - JOUR AU - Euler, Reinhardt AU - Gallardo, Luis H. AU - Luca, Florian TI - On a binary recurrent sequence of polynomials JO - Communications in Mathematics PY - 2014 SP - 151 EP - 157 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a3/ LA - en ID - COMIM_2014__22_2_a3 ER -
Euler, Reinhardt; Gallardo, Luis H.; Luca, Florian. On a binary recurrent sequence of polynomials. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 151-157. http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a3/