On a binary recurrent sequence of polynomials
Communications in Mathematics, Tome 22 (2014) no. 2, pp. 151-157.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we study the properties of the sequence of polynomials given by $g_0=0,~g_1=1$, $g_{n+1}=g_n+\Delta g_{n-1}$ for $n\ge 1$, where $\Delta \in {\mathbb F}_q[t]$ is non-constant and the characteristic of ${\mathbb F}_q$ is $2$. This complements some results from R. Euler, L.H. Gallardo: On explicit formulae and linear recurrent sequences, Acta Math. Univ. Comenianae, 80 (2011) 213-219.
Classification : 11B39, 11T06, 11T55
Keywords: sequences of binary polynomials; Stern-Brocot sequence; perfect fields of characteristic 2
@article{COMIM_2014__22_2_a3,
     author = {Euler, Reinhardt and Gallardo, Luis H. and Luca, Florian},
     title = {On a binary recurrent sequence of polynomials},
     journal = {Communications in Mathematics},
     pages = {151--157},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2014},
     mrnumber = {3303136},
     zbl = {06410232},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a3/}
}
TY  - JOUR
AU  - Euler, Reinhardt
AU  - Gallardo, Luis H.
AU  - Luca, Florian
TI  - On a binary recurrent sequence of polynomials
JO  - Communications in Mathematics
PY  - 2014
SP  - 151
EP  - 157
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a3/
LA  - en
ID  - COMIM_2014__22_2_a3
ER  - 
%0 Journal Article
%A Euler, Reinhardt
%A Gallardo, Luis H.
%A Luca, Florian
%T On a binary recurrent sequence of polynomials
%J Communications in Mathematics
%D 2014
%P 151-157
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a3/
%G en
%F COMIM_2014__22_2_a3
Euler, Reinhardt; Gallardo, Luis H.; Luca, Florian. On a binary recurrent sequence of polynomials. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 151-157. http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a3/