Discontinuity of the Fuglede-Kadison determinant on a group von Neumann algebra
Communications in Mathematics, Tome 22 (2014) no. 2, pp. 141-149
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that in contrast to the case of the operator norm topology on the set of regular operators, the Fuglede-Kadison determinant is not continuous on isomorphisms in the group von Neumann algebra $\mathcal {N}(\mathbb {Z})$ with respect to the strong operator topology. Moreover, in the weak operator topology the determinant is not even continuous on isomorphisms given by multiplication with elements of $\mathbb {Z}[\mathbb {Z}]$. Finally, we define $T\in \mathcal {N}(\mathbb {Z})$ such that for each $\lambda \in \mathbb {R}$ the operator $T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})}$ is a self-adjoint weak isomorphism of determinant class but $\lim _{\lambda \to 0}\det (T+\lambda \cdot {\mathrm{id}} _{l^{2}(\mathbb {Z})})\neq \det (T)$.
@article{COMIM_2014__22_2_a2,
author = {K\"uter, Benjamin},
title = {Discontinuity of the {Fuglede-Kadison} determinant on a group von {Neumann} algebra},
journal = {Communications in Mathematics},
pages = {141--149},
publisher = {mathdoc},
volume = {22},
number = {2},
year = {2014},
mrnumber = {3303135},
zbl = {06410231},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a2/}
}
TY - JOUR AU - Küter, Benjamin TI - Discontinuity of the Fuglede-Kadison determinant on a group von Neumann algebra JO - Communications in Mathematics PY - 2014 SP - 141 EP - 149 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a2/ LA - en ID - COMIM_2014__22_2_a2 ER -
Küter, Benjamin. Discontinuity of the Fuglede-Kadison determinant on a group von Neumann algebra. Communications in Mathematics, Tome 22 (2014) no. 2, pp. 141-149. http://geodesic.mathdoc.fr/item/COMIM_2014__22_2_a2/