Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 57-69
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this article, we prove the existence of entropy solutions for the Dirichlet problem $$ (P)\begin {cases} -\mathrm{div} [{\omega }(x){\cal A} (x,u,{\nabla }u)]=f(x)-\mathrm{div} (G),\text {in }\Omega \\ u(x) = 0,\text {on }{\partial \Omega } \end {cases} $$ where $\Omega $ is a bounded open set of $\real ^N$, $N\geq 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p'}(\Omega , \omega )]^N$.
Classification :
35A01, 35J25, 35J60, 35J62, 35J70
Keywords: degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
Keywords: degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
@article{COMIM_2014__22_1_a4,
author = {Cavalheiro, Albo Carlos},
title = {Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$},
journal = {Communications in Mathematics},
pages = {57--69},
publisher = {mathdoc},
volume = {22},
number = {1},
year = {2014},
mrnumber = {3233727},
zbl = {1302.35180},
language = {en},
url = {http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a4/}
}
TY - JOUR AU - Cavalheiro, Albo Carlos TI - Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$ JO - Communications in Mathematics PY - 2014 SP - 57 EP - 69 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a4/ LA - en ID - COMIM_2014__22_1_a4 ER -
Cavalheiro, Albo Carlos. Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a4/