Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
Communications in Mathematics, Tome 22 (2014) no. 1, pp. 57-69.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this article, we prove the existence of entropy solutions for the Dirichlet problem $$ (P)\begin {cases} -\mathrm{div} [{\omega }(x){\cal A} (x,u,{\nabla }u)]=f(x)-\mathrm{div} (G),\text {in }\Omega \\ u(x) = 0,\text {on }{\partial \Omega } \end {cases} $$ where $\Omega $ is a bounded open set of $\real ^N$, $N\geq 2$, $f \in L^1(\Omega )$ and $G/{\omega } \in [L^{p'}(\Omega , \omega )]^N$.
Classification : 35A01, 35J25, 35J60, 35J62, 35J70
Keywords: degenerate elliptic equations; entropy solutions; weighted Sobolev spaces
@article{COMIM_2014__22_1_a4,
     author = {Cavalheiro, Albo Carlos},
     title = {Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$},
     journal = {Communications in Mathematics},
     pages = {57--69},
     publisher = {mathdoc},
     volume = {22},
     number = {1},
     year = {2014},
     mrnumber = {3233727},
     zbl = {1302.35180},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a4/}
}
TY  - JOUR
AU  - Cavalheiro, Albo Carlos
TI  - Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
JO  - Communications in Mathematics
PY  - 2014
SP  - 57
EP  - 69
VL  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a4/
LA  - en
ID  - COMIM_2014__22_1_a4
ER  - 
%0 Journal Article
%A Cavalheiro, Albo Carlos
%T Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$
%J Communications in Mathematics
%D 2014
%P 57-69
%V 22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a4/
%G en
%F COMIM_2014__22_1_a4
Cavalheiro, Albo Carlos. Existence of entropy solutions for degenerate quasilinear elliptic equations in $L^1$. Communications in Mathematics, Tome 22 (2014) no. 1, pp. 57-69. http://geodesic.mathdoc.fr/item/COMIM_2014__22_1_a4/